张祥前《统一场论第六版》

四十四.磁场的几何形式方程

前面分析指出,随时间变化的引力场产生电场。人类已经发现,带电粒子相对于我们观察者以速度V运动的时候,可以引起V垂直方向上电场的变化,电场变化的部分我们可以认为就是磁场,也就是随速度变化的电场产生了磁场,统一场论继承这种看法。

设想一个相对于我们观察者静止的o点,质量为m,带有电荷q,在周围空间p处产生了静电场E,由o点指向p点的矢径为R,我们以R的长度r为半径作一个高斯面s = 4πr²【内接球体体积为4π r³】包围o点,则:

E = q R/4π ε。r³ = k( dm/dt)R/4π ε。r³

k是常数。

当o点相对于我们以速度V运动的时候,可以引起电场E的变化,变化的部分我们可以认为是磁场B,很简单的想法是电场E乘以速度V就是磁场B ,由于速度V和电场E相互垂直时候,产生的磁场最大,因而它们之间是叉乘,所以有以下关系,

B = 常数乘以(V ×E)

由电场E的几何形式方程 E = q R/4π ε。r³ = k( dm/dt)R/4π ε。r³,可以求出磁场B 的几何形式方程,

B = 常数乘以【V ×(q R/4π ε。r³)】 = 常数乘以【V ×k( dm/dt)R/4π ε。r³】

合并常数,以上与磁场B相关的常数用磁导率μ表示,由于我们这里讨论的是在真空情况下,所以用真空磁导率μ。表示。

B = μ。【V ×k( dm/dt)R/4π r³】

以上就是真空中磁场的几何形式方程。这个方程和电场、磁场相互关系满足的方程 B = V ×E /c²是紧密联系在一起的。

B =μ。【V ×k( dm/dt)R/4π r³】

= μ。【V ×(q R/4π r³)】

= μ。【V ×ε。(q R/4π ε。r³)】

= μ。ε。【V ×(q R/4π ε。r³)】

= μ。ε。(V ×E)

在电磁学中,认为真空中磁导率μ。和介电常数ε。的乘积是真空中光速c的平方的倒数【这个是人为规定的】,所以以上方程可以写为:

B = V ×E /c²

以上方程反映了电场和磁场的基本关系。从这个方程加上时空同一化方程r² = c²t²可以导出麦克斯韦方程中变化磁场产生电场、变化电场产生磁场。

注意,以上的磁场和运动电场都没有考虑相对论效应,只是在V很小或者等于零的情况下成立。

在静电场方程中乘以Ψ就是电场的普遍形式,Ψ 为相对论效应修正相,

Ψ = (1- v²/c²)/【√[1- (v²/c²)sin²θ] 】³,其中θ为R和x轴的夹角。电场方程乘以相对论修正相Ψ,不影响电场和磁场之间的关系。
 

张祥前《统一场论第六版》

手机用户点击浏览器底部 或右上角等按钮,收藏或分享到朋友圈

微信扫一扫,订阅「故事365」

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表(无需密码 现在注册